Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.

نویسندگان

  • Ginette J Hupé
  • John E Lewis
چکیده

Brown ghost knifefish, Apteronotus leptorhynchus, are a species of weakly electric fish that produce a continuous electric organ discharge (EOD) that is used in navigation, prey capture and communication. Stereotyped modulations of EOD frequency and amplitude are common in social situations and are thought to serve as communication signals. Of these modulations, the most commonly studied is the chirp. This study presents a quantitative analysis of chirp production in pairs of free-swimming, physically interacting male and female A. leptorhynchus. Under these conditions, we found that in addition to chirps, the fish commonly produce a second signal type, a type of frequency rise called abrupt frequency rises, AFRs. By quantifying the behaviours associated with signal production, we find that Type 2 chirps tend to be produced when the fish are apart, following periods of low aggression, whereas AFRs tend to be produced when the fish are aggressively attacking one another in close proximity. This study is the first to our knowledge that quantitatively describes both electrocommunication signalling and behavioural correlates on a subsecond time-scale in a wave-type weakly electric fish.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.

The brown ghost knifefish, Apteronotus leptorhynchus, is a model wave-type gymnotiform used extensively in neuroethological studies. As all weakly electric fish, they produce an electric field (electric organ discharge, EOD) and can detect electric signals in their environments using electroreceptors. During social interactions, A. leptorhynchus produce communication signals by modulating the f...

متن کامل

The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus.

Weakly-electric fish are a well-established model system for neuroethological studies on communication and aggression. Sensory encoding of their electric communication signals, as well as behavioural responses to these signals, have been investigated in great detail under laboratory conditions. In the wave-type brown ghost knifefish, Apteronotus leptorhynchus, transient increases in the frequen...

متن کامل

L-citrulline immunoreactivity reveals nitric oxide production in the electromotor and electrosensory systems of the weakly electric fish, Apteronotus leptorhynchus.

Weakly electric fish produce electric organ discharges (EODs) used for electrolocation and communication. In the brown ghost knifefish, Apteronotus leptorhynchus, several neuron types in brain regions that control the EOD or process electrosensory information express nitric oxide synthase (NOS). The present study used immunoreactivity for L-citrulline, a byproduct of the production of nitric ox...

متن کامل

Coding Conspecific Identity and Motion in the Electric Sense

Interactions among animals can result in complex sensory signals containing a variety of socially relevant information, including the number, identity, and relative motion of conspecifics. How the spatiotemporal properties of such evolving naturalistic signals are encoded is a key question in sensory neuroscience. Here, we present results from experiments and modeling that address this issue in...

متن کامل

Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.

Brown ghost knife fish (Apteronotus leptorhynchus) can briefly increase their electric organ discharge (EOD) frequency to produce electrocommunication signals termed chirps. The chirp rate increases when fish are presented with conspecific fish or high-frequency (700-1100 Hz) electric signals that mimic conspecific fish. We examined whether A. leptorhynchus also chirps in response to artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2008